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Abstract. Using multiple-scattering theory, we investigate the optimization of the elastic wave band gaps of
three dimensional three-component phononic crystals with local resonance. The optimum gaps of two sys-
tems including Au spheres coated with Pb embedded in Si matrix and Pb spheres coated with plastic
embedded in Si matrix are obtained by tuning the ratio of the inner and the outer radii of the coating
layers. It also shows that the elastic wave band gaps for the two systems versus the filling fractions and
the radius ratio display different features.

PACS. 43.20.+g General linear acoustics – 43.35.+d Ultrasonics, quantum acoustics, and physical effects
of sound – 43.40.+s Structural acoustics and vibration

1 Introduction

In recent years, there has been growing interest in classi-
cal wave propagation in periodic composite media. The
study of photonic crystals has led the way, with the
theoretical prediction and experimental realization of pho-
tonic band gaps [1,2]. Recently, a great deal of atten-
tion has extended to the phononic crystals, the counter-
part of photonic crystals, for which elastic waves (EL)
and/or acoustic waves (AC) are concerned [3–30]. As in
the photonic crystals, the basis of the whole applications
of phononic crystals, such as acoustic/elastic wave filters
depends on the existence of wide frequency band gaps in
which sound and vibration are forbidden. In addition, the
study of the EL and AC waves will provide richer physics
because of their vector character.

In the previous works, the study of phononic crystals
is mainly focused on the two-component systems and the
complete band gaps are mainly due to Bragg scattering
and the lattice structure, the mass density contrast and
the wave velocity contrast of the two components play im-
portant roles [3–9,17–29]. It is also realized that the res-
onance of the structural unit in two component phononic
crystal is important in opening the bandgaps [10–16,30].
Recently, a recipe for guaranteeing the existence of elas-
tic wave bandgap was proposed. It requires the intro-
duction of locally resonant structural units, formed with
heavy hard cores with soft coatings embedded in the ma-
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trices [10,12]. It has also been found that the elastic wave
band gap properties can be tuned continuously from a
resonance gap to a Bragg gap just by varying the elas-
tic properties of the coating layer [12]. The transmission
property of an elastic wave in three-component systems is
also investigated experimentally and theoretically [30].

In this article, we optimize the bandgap of the three
dimensional (3D) three-component phononic crystals with
local resonance. We consider two kinds of system in which
the gap widths exhibit respectively two different behaviors
with increasing the filling fraction [12]. One is formed with
Au spheres coated by Pb embedded in Si matrix, the other
consists of a Pb sphere coated by plastic, embedded in Si
matrix. They both fulfill the recipe that the coating layer
is soft relative to the core and matrix which guarantees
the resonance band gap formation, but according to refer-
ence [12], the two systems have different behavior in gap
opening. Their complete band gaps are systemically op-
timized by modulating the thickness of the coating layer,
resulting in the optimum gaps. All the calculations are
performed using the multiple-scattering method. We out-
line the multiple-scattering theory in Section 2. Section 3
presents the results and discussions and Section 4 gives a
summary of this article.

2 Method

Multiple scattering of elastic waves by particles has been
extensively studied in the last 20 years. In this section we
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outline the multiple-scattering theory (MST) for elastic
waves [11,12].

In a homogeneous medium, the elastic wave equation
may be written as

(λ + 2µ)∇(∇ · u) − µ∇×∇× u = −ρω2u, (1)

where ρ is the density and λ, µ are the Lamé constants of
the medium. Now, we consider a composite medium that
contains a host matrix and embedded coating scatterers.
The incident wave for scatterer i may be expressed as

uin(ri) =
∑

lmσ

ai
lmσJlmσ(ri), (2)

and the scattered wave by scatter i may be expressed as

usc(ri) =
∑

lmσ

bi
lmσHlmσ(ri), (3)

where, ri is measured from the center of scatterer i,
Jlmσ(r) and Hlmσ(r) are defined as

Jlm1(r) =
1
α
∇[jl(αr)Ylm(r̂)],

Jlm2(r) = ∇× [rjl(βr)Ylm(r̂)],

Jlm3(r) =
1
β
∇×∇× [rjl(βr)Ylm(r̂)], (4)

and

Hlm1(r) =
1
α
∇× [hl(αr)Ylm(r̂)],

Hlm2(r) = ∇× [rhl(βr)Ylm(r̂)],

Hlm3(r) =
1
β
∇×∇× [rhl(βr)Ylm(r̂)], (5)

where α = ω
√

ρ/(λ + 2µ), β = ω
√

ρ/µ, jl(x) is the spher-
ical Bessel function, hl(x) is the spherical Hankel function
of the first kind. The index σ ranging from 1 to 3 stands
for three kinds of modes: σ=1 is for the longitudinal mode,
and σ = 2, 3 represent the two transverse modes. Accord-
ing to multiple-scattering theory, the wave incident on a
given scatterer consists of two parts, one is the externally
incident wave, uin(0)(ri), which may be expressed as

uin(0)(ri) =
∑

lmσ

a
i(0)
lmσJlmσ(ri). (6)

The second part is the sum of all the scattered waves ex-
cept that from scatterer i, given by

uin(ri) − uin(0)(ri) =
∑

j �=i

∑

l′′m′′σ′′
bj
l′′m′′σ′′Hl′′m′′σ′′ (rj),

(7)
where ri and rj refer to the position of the same spa-
tial point measured from scatterer i and j respectively.
With Ri(j) denoting the position of scatterer i(j), we have
rj = ri + Ri − Rj . It may be proved that

Hl′′m′′σ′′ (ri + Ri − Rj) =
∑

lmσ

Gl′′m′′σ′′lmσ(Ri − Rj)Jlmσ(ri), (8)

where G is the vector structure constant, given by

Glmσl′m′σ′(R) =





Xα
lml′m′(R), σ = σ′ = 1

∑

µ

c(l1lm− µµ)Xβ
lm−µl′m′−µ′(R)c(l′1l′m′ − µµ),

σ = σ′ = 2, 3

−i

(
2l′ + 1
l′ + 1

)1/2 ∑

µ

c(l1lm− µµ)

×Xβ
lm−µl′−1m′−µ′(R)c(l′ − 11l′m′ − µµ),

σ �= σ′; σ, σ′ �= 1,
(9)

Xκ
lml′m′(R) is the structure constant for scalar waves, de-

fined as

Xκ
lml′m′(R) =

4π
∑

l′′
il

′+l′′−lClm
l′m′l′′m−m′hl′′(κR)Yl′′m−m′(R̂). (10)

Here Clm
l′m′l′′m′′ is an integral,

Clm
l′m′l′′m′′ =

∫∫

s

Ylm(Ω)Y ∗
l′m′(Ω)Y ∗

l′′m′′(Ω)dΩ. (11)

By defining Gij
l′′m′′σ′′lmσ = Gl′′m′′σ′′lmσ(Ri − Rj),

Hl′′m′′σ′′(rj) may be expressed as

Hl′′m′′σ′′(rj) =
∑

lmσ

Gij
l′′m′′σ′′lmσJlmσ(ri). (12)

For a given scatterer, the scattered displacement field is
completely determined from the incident field through
the scattering matrix. There is a deterministic rela-
tion between the expansion coefficients A = {aj

lmσ}
and B = {bj

lmσ}:

bj
l′′m′′σ′′ =

∑

l′m′σ′
tjl′′m′′σ′′l′m′σ′a

j
l′m′σ′ , (13)

B = TA,

where the scattering matrix T = {tlmσl′m′σ′} can be ob-
tained from the elastic Mie scattering solution of a scatter.
Here the scatterer is a coated sphere and thus requires the
boundary conditions with displacement and normal stress
continuity at the interface of all the layers. Substituting
equations (2), (6), (12) and (13) into equation (7), we ar-
rive at

∑

jl′m′σ′

[
δijδll′δmm′δσσ′

−
∑

l′′m′′σ′′
tjl′′m′′σ′′l′m′σ′G

ij
l′′m′′σ′′lmσ

]
aj

l′m′σ′ = a
i(0)
lmσ.

(14)
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This is the final equation for a multiple-scattering system.
For a finite and/or disordered system, we must solve this
equation in order to investigate the system response to
external perturbations. The normal modes of the system
may be obtained by solving the following secular equation,
in the absence of an external incident wave:

det

∣∣∣∣∣δijδll′δmm′δσσ′

−
∑

l′′m′′σ′′
tjl′′m′′σ′′l′m′σ′G

ij
l′′m′′σ′′lmσ

∣∣∣∣∣ = 0. (15)

For a periodic system, equation (15) may be trans-
formed to

det

∣∣∣∣∣δss′δll′δmm′δσσ′

−
∑

l′′m′′σ′′
ts

′
l′′m′′σ′′l′m′σ′Gss′

l′′m′′σ′′lmσ(k)

∣∣∣∣∣ = 0, (16)

where s and s′ label the scatterers in the unit cell with po-
sition vector os and os′ , and Gss′

l′′m′′σ′′lmσ(k) is defined as

Gss′
l′′m′′σ′′lmσ(k) =

∑

R

Gl′′m′′σ′′lmσ(os − os′ − R) exp(ik ·R), (17)

where the sum
∑
R

is over all lattice sites. The solution

of equation (16) gives the band structure of an elastic
periodic system.

3 Results and discussions

We first consider the composite system with Au spheres
coated by Pb embedded in the Si background. The phys-
ical parameters of the three components satisfy the re-
quirement that the coating layer should be softer than
both the matrix and core (the part to be coated) in or-
der to form the local resonance structure. For this system,
it is known that the resonance bandgap experiences the
following variation with increasing filling fraction: the gap
width increases first, reaches a maximum at a medium fill-
ing fraction, then starts to decrease before finally disap-
pearing [12]. This can be explained as follows: at low and
mediate filling fraction, the resonant mechanism remains
dominant, but with the filling fraction further increasing,
the coupling between the neighboring local resonant units
gets more and more prominent, the local resonance of each
unit finally evolves into the collective motions of the whole
system, the local resonances are not “local” any longer, the
bandgap finally closes up [12]. The material parameters
are chosen as follows: ρ = 19.5 g/cm3, Cl = 3.36 km/s,
Ct = 1.24 km/s for Au; ρ = 11.4 g/cm3, Cl = 2.16 km/s,
Ct = 0.86 km/s for Pb; ρ = 2.33 g/cm3, Cl = 8.95 km/s,

Fig. 1. The elastic wave band structure of Au spheres coated
by Pb embedded in Si matrix arranged in a fcc structure. The
gap is marked by the shaded area. The filling fraction of the
coated spheres is 0.204 and the radius ratio rin/rout is 12/23.

Ct = 5.36 km/s for Si; where ρ, Cl and Ct are, respec-
tively, the density, the longitudinal and transverse sound
velocity. We arrange the coated spheres in a fcc structure
of filling fraction (core + coating layer) 0.204, and employ
the ratio of the inner and the outer radii of the coating,
i.e., rin/rout as a tuning parameter. When it is 12/23, we
get the elastic wave band structure as shown in Figure 1.
A sizable absolute gap is seen at frequency 0.48, in units
of d/2πCt, where Ct is the transverse velocity in a Si ma-
trix and d is the diameter of the coated sphere. This gap
is owing to the local resonances of the coated sphere and
it has also been proved to be independent of the arrange-
ment of the spheres [12]. The fairly flat band defines the
low edge of this gap.

The essential physics in the bandgap formation of the
three component phononic crystal with the locally reso-
nant unit can be captured through a “spring model”: in
each local unit, the inner core serves as a heavy mass and
the coating layer serves as a soft spring, thus each local
unit acts as a simple oscillator, and resonance is easy to in-
duce. We can see that the coating layer plays an important
role on the resonance and thus on the bandgap. Changing
the ratio of the inner and the outer radii is equivalent to
changing the properties of the spring, the band structure
and gap formation will thus be influenced consequently.
We have calculated the gap size and mid-gap frequency
at filling fraction 0.204 as a function of the radius ratio.
The bars in Figure 2 mark the size of the gap and the line
in the middle marks the mid-gap frequencies in the fcc
structures. We see the widest gap appears at intermediate
radius ratio.

For comparison, in Figure 3 we show the gap
width/mid-gap vs. radius ratio for some different filling
fractions of the coated spheres. The radius ratio runs from
about 0.4 to a limit value. The data label the filling frac-
tions. We can see there is a maximum for each filling frac-
tion. In the filling fraction range discussed, the biggest
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Fig. 2. The gap and the mid-gap frequencies of Au spheres
coated by Pb in Si matrix plotted as a function of the ratio of
the coating’s inner and outer radii. The filling fraction is fixed
at 0.204.

Fig. 3. The gap width/mid-gap vs. the radius ratio for
Au-Pb-Si systems with filling fraction at 0.098, 0.204, 0.294,
0.499 and 0.602 respectively.

gap appears at filling fraction 0.204 and at radius ratio
0.72. When the radius ratio is further increased, the gaps
close gradually. This result is easy to understand as the
coating layer gets thinner and thinner till disappearing,
the resonance mechanism gradually gets out of its role.

Next, we discuss another three component phononic
crystal which is formed by embedding Pb core with plas-
tic coating layer in Si matrix. There is also local resonance
in the crystals but in that case the coating layer is even
softer relative to the core and the matrix [12]. For this
type of system, even at very high filling fraction, the cou-
pling between local units is still rather weak. The local
resonance mechanism plays a role in all the filling frac-
tion range, the gap variation with the filling fraction ex-

Fig. 4. The elastic wave band structure of Pb spheres coated
by plastic embedded in Si matrix arranged in the fcc struc-
ture. The filling fraction is 0.204 and the radius ratio rin/rout

is 12/23.

Fig. 5. Solid: the gap and the mid-gap frequencies of
Pb spheres coated by plastic embedded in Si matrix. Dotted:
the positions of the flat bands, plotted as a function of the
radius ratio, the filling fraction is 0.204.

hibits a completely different behavior at high filling frac-
tion. This is to say, for the second type, it is the pure
local resonance mechanism which works across the whole
range [12]. The material parameters are chosen as follow-
ing: ρ = 11.4 g/cm3, Cl = 2.16 km/s, Ct = 0.86 km/s for
Pb; ρ = 1.19 g/cm3, Cl = 2.75 km/s, Ct = 1.2 km/s for
plastic; ρ = 2.33 g/cm3, Cl = 8.95 km/s, Ct = 5.36 km/s
for Si. In Figure 4 we plot the band structure for such a
composition with fcc structure and filling fraction 0.204,
the radius ratio is again taken 12/23. The lowest gap ap-
pears at the frequency of about 0.32, in unit of d/2πCt.

We also optimize this gap by tuning the ratio of the
coating’s inner and outer radii. In Figure 5, we show the
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Fig. 6. The gap-width/midgap vs. the radius ratio for
Pb-Plastic-Si systems with filling fraction at 0.098, 0.204,
0.294, 0.499, 0.602 and 0.718 respectively.

midgap and gap size (the solid line and the limit), and
the flat band (the dotted line) as a function of the radius
ratio. Here the filling fraction of the coated spheres is fixed
at 0.204. As we expect, the widest gap is found near the
radius ratio 0.88 (it is also clearly shown in Fig. 6). For the
flat band, when the radius ratio varies from 0.435 to 0.957,
it changes from 0.41 to 0.31 and then goes up to 0.4. In
the range from 0.585 to 0.76, it appears in the band gap.
The flat band corresponds to a shear mode localized in
the structural unit, which is a rotational oscillation of the
hard sphere around the center. It belongs to each single
unit, and is thus dispersiveless in nature. Confined inside
the inner core region of the structural unit, it is hard to
couple with the external excitations.

In Figure 6, we show the gap width/midgap vs. radius
ratio for some different filling fractions. The radius ratio
runs from about 0.3 to near a limit value. The data label
the filling fractions of coated spheres. We can see there is
a maximum for each filling fraction. The radius ratio is
smaller than 0.67, the gap width increases with the filling
fraction.

This is different from the former case, where the gap
width increases to a maximum at an intermediate filling
fraction and turns to decrease as the filling fraction in-
creases. It shows that in the present Pb-Plastic-Si system,
when the radius ratio is small (which means a relatively
thicker coating), the local resonance governs the gap prop-
erties. For the former Au-Pb-Si system, the gap narrowing
at higher filling fraction is a signature that local resonance
mechanism breaks down gradually because of the strong
coupling of the resonant units as mentioned above [12].
We can see that although these two systems both fulfill
the resonance structure criteria, they show different char-
acters in the gap optimizing process. In the latter system,
a pure resonance mechanism dominates even at high fill-
ing fraction, which is attributed to the even softer coating

layer compared to the former system. It is also interesting
to note that for both systems at high radius ratio (which
means relatively thin coatings), the gap width decreases
monotonically with the filling fraction, which also indi-
cates the failure of the local resonance mechanism because
of a short spring that is relatively stiff.

4 Conclusions

In conclusion, we investigate the complete elastic wave
band gap in the 3D three-component systems which are
based on local resonance. The elastic wave band gap of two
systems including Au spheres coated by Pb embedded in
a Si matrix and Pb spheres coated by plastic embedded
in a Si matrix are discussed, using the multiple-scattering
method. We optimize the elastic wave band gap by tuning
the ratio of the coating’s inner and outer radii. We obtain
the optimum gap for the first system at radius ratio of 0.72
and filling fraction of 0.204, and for the second system at
radius ratio of 0.70 and filling fraction of 0.602. The op-
timization of these 3D three-component systems not only
serves as an excellent prototype for further understanding
the mechanisms leading to classical wave gaps and their
interplay, but provides a good guide for their applications.
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Llinares, F. Meseguer, Nature 379, 241 (1995)
10. Zhengyou Liu, Xixiang Zhang, Yiwei Mao, Y.Y. Zhu, Z.

Yang, C.T. Chan, P. Sheng, Science 289, 1734 (2000)
11. Zhengyou Liu, C.T. Chan, P. Sheng, A.L. Goertzen, J.H.

Page, Phys. Rev. B 62, 2446 (2000)
12. Zhengyou Liu, C.T. Chan, P. Sheng, Phys. Rev. B 65,

165116 (2002)
13. M.S. Kushwaha, B. Djafari-Rouhani, J. Appl. Phys. 84,

4677 (1998)



482 The European Physical Journal B

14. M.S. Kushwaha, B. Djafari-Rouhani, L. Dobrzynski, Phys.
Lett. A 248, 252 (1998)

15. M. Kafesaki, R.S. Penciu, E.N. Economou, Phys. Rev.
Lett. 84, 6065 (2000)

16. C. Goffaux, J. Sánchez-Dehesa, A. Levy Yeyati, Ph.
Lambin, A. Khelif, J.O. Vasseur, B. Djafari-Rouhani,
Phys. Rev. Lett. 88, 225502 (2002)

17. Xin Zhang, Zhengyou Liu, Youyan Liu, Fugen Wu, Phys.
Lett. A 313, 455 (2003)

18. Xin Zhang, Zhengyou Liu, Jun Mei, Youyan Liu, J. Phys:
Condens. Matter 15, 1 (2003)

19. Fugen Wu, Zhengyou Liu, Youyan Liu, Phys. Rev. E 66,
046628 (2002)

20. R. Sainidou, N. Stefanou, A. Modinos, Phys. Rev. B 66,
212301 (2002)

21. J.O. Vasseur, P.A. Deymier, B. Chenni, B.
Djafari-Rouhani, L. Dobrzynski, D. Prevost, Phys.
Rev. Lett. 86, 3012 (2001)

22. M. Kafesaki, M.M. Sigalas, N. Garćıa, Physica B 296, 190
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